Pro-étale cohomology of Drinfeld's symmetric space

Gabrielle Li

UIUC Arithmetic and chromatic learning seminar

12/04/2024

Outline

- Logarithm exact sequence
- Steinberg representations
- Some results from Colmez-Dospinescu-Niziol
- **4** Computing $H^i_{\text{proét}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^{**})$
- 6 Computing invariant module

Goal of this talk:

$$H^0(\Pi_n, \operatorname{St}_1(\mathbb{Q}_p / \mathbb{Z}_p)^*) \cong H^0(\Pi_n, H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathcal{O}^{**})).$$

We will focus on $H^i(\Pi_n, H^1_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathcal{O}^{**})$ for i=1. The main reference [1] contains results of greater generality.

Recollection

- § Fundamental exact sequence:

$$0 \to H^1_{\mathsf{cts}}(\mathbb{G}_1, A_1^{**}) \xrightarrow{\mathsf{det}^*} H^1_{\mathsf{cts}}(\mathbb{G}_n, A_n^{**}) \xrightarrow{b} H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}_C^{n-1}, \mathcal{O}^{**})^{\Pi_n}$$

for
$$(n, p) \neq (2, 2)$$

$$0 \to H^1_{\mathsf{cts}}(\mathbb{G}_1, A_1^{**}) \oplus \mathbb{Z}/2 \xrightarrow{\mathsf{det}^* \oplus \hat{\alpha}} H^1_{\mathsf{cts}}(\mathbb{G}_2, A_2^{**}) \xrightarrow{b} H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^{**})^{\Pi_n}$$

for
$$(n, p) = (2, 2)$$
.

Gabrielle Li (UIUC Arithmetic and chromatic Pro-étale cohomology of Drinfeld's symmetric

Notation: the Tate twist

 $\mathbb{Q}_p(1)$: the 1-th Tate twist of \mathbb{Q}_p . Topologically, this is \mathbb{Q}_p , but the action of $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ factors through $\operatorname{Gal}(\mathbb{Q}_p(\mu_{p^\infty})/\mathbb{Q}_p)\cong \mathbb{Z}_p^\times$. More explicitly, we have the cyclotomic character map

$$\chi: \mathsf{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p) \to \mathsf{Gal}(\mathbb{Q}_p(\mu_{p^\infty})/\mathbb{Q}_p) \cong \mathbb{Z}_p^\times$$

by restriction, and the right hand side act on the vector space \mathbb{Q}_p . Thus, we obtain a 1-dimensional representation of $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ over \mathbb{Q}_p , which we denote as the Tate twist $\mathbb{Q}_p(1)$.

We can define $\mathbb{Z}_p(1)$ using a short exact sequence

$$0 \to \mathbb{Z}_{\rho}(1) \to \mathbb{Q}_{\rho}(1) \to \mu_{\rho^{\infty}} \to 0. \tag{1}$$

Logarithm exact sequence

Lemma (Logarithm exact sequence, [1] 4.2.1)

Let X be a rigid-analytic variety. There is an exact sequence of sheaves of condensed abelian groups on the (pro-)étale site of X:

$$0 \to \mu_{p^{\infty}} \to \mathcal{O}^{**} \xrightarrow{\log} \mathcal{O} \to 0 \tag{2}$$

where $\mu_{p^{\infty}}$ is the sheaf of p-th roots of unity.

We want to commpute $H^1_{\text{pro\'et}}(\mathcal{H}^{n-1}_C,\mathcal{O}^{**})$. The logarithm exact sequence allows us to approach this via computing $H^1_{\text{pro\'et}}(\mathcal{H}^{n-1}_C,\mu_{p^\infty})$. The short exact sequence

$$0 o \mathbb{Z}_{m{
ho}}(1) o \mathbb{Q}_{m{
ho}}(1) o \mu_{m{
ho}^{\infty}} o 0$$

further reduces our task to computing $H^1_{\text{pro\'et}}(\mathcal{H}^{n-1}_{\mathcal{C}},\mathbb{Q}_p(1))$.

Steinberg representation I

For a profinite set $S = \lim S_i$ and a ring A, let LC(S, A) be the locally constant function on S with values in A. If there is a topology on A, then we give $LC(S, A) = \lim LC(S_i, A)$ the colimit topology.

Definition (Steinberg representation)

We define

$$\operatorname{\mathsf{St}}_1(A) = \frac{\operatorname{\mathsf{LC}}(\mathbb{P}^{n-1}(\mathbb{Q}_p),A)}{A}.$$

There is a continuous action of $GL_n(\mathbb{Q}_p)$ on $St_1(A)$.

Definitions and results for St_r could be found in the main paper.

Steinberg representation II

Let $St_1(A)^*$ denote the continuous A-module homomorphisms

$$\mathsf{St}_1(A) \to A$$
.

For $I, I' \in \mathbb{P}^{n-1}(\mathbb{Q}_p)$, we view $\delta_I - \delta_{I'}$ as an element of $\mathsf{St}_1(A)^*$, where δ denotes the evaluation map on I.

Definition $(\operatorname{St}_1(\mathbb{Q}_p / \mathbb{Z}_p)^*)$

We define the $GL_n(\mathbb{Q}_p)$ -module $St_r(\mathbb{Q}_p / \mathbb{Z}_p)^*$ using the exact sequence

$$0 \to \operatorname{St}_1(\mathbb{Z}_p)^* \to \operatorname{St}_1(\mathbb{Q}_p)^* \to \operatorname{St}_1(\mathbb{Q}_p / \mathbb{Z}_p)^* \to 0. \tag{3}$$

Note that this definition is ad-hoc as $\mathbb{Q}_p/\mathbb{Z}_p$ is not a ring.

4□ > 4□ > 4 = > 4 = > = 90

Steinberg representation III

Lemma ([1] 5.1.2)

For $n \geq 2$, the subset of $\operatorname{St}_1(\mathbb{Q}_p/\mathbb{Z}_p)^*$ fixed by $\operatorname{GL}_n(\mathbb{Z}_p) \subset \operatorname{GL}_n(\mathbb{Q}_p)$ is a free \mathbb{Z}_p -module of rank 1.

Taking the $GL_n(\mathbb{Z}_p)$ -fixed points, we obtain an injective boundary map associated with the short exact sequence 3:

$$\partial: H^0(\mathsf{GL}_n(\mathbb{Z}_p),\mathsf{St}_1(\mathbb{Q}_p\,/\,\mathbb{Z}_p)^*) \to H^1(\mathsf{GL}_n(\mathbb{Z}_p),\mathsf{St}_1(\mathbb{Z}_p)^*).$$

Lemma ([1] 5.1.4)

Let μ be the generator of $H^0(GL_n(\mathbb{Z}_p), St_1(\mathbb{Q}_p/\mathbb{Z}_p)^*)$. Then $\partial(\mu) \in H^1(GL_n(\mathbb{Z}_p), St_1(\mathbb{Z}_p)^*)$ is represented by the cocycle

$$g \mapsto \delta_I - \delta_{g(I)}$$

for $g \in GL_n(\mathbb{Z}_p)$.

CDN: Étale cohomology I

Definition

We define

$$H^{i}_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_{p})=\lim H^{i}_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/p^{n}\,\mathbb{Z})$$

$$H^i_{\mathrm{cute{e}t}}(X,\mathbb{Q}_p)=H^i_{\mathrm{cute{e}t}}(X,\mathbb{Z}_p)\otimes_{\mathbb{Z}_p}\mathbb{Q}_p$$

Note that this is an ad-hoc definition souped up from the constant sheaf $\mathbb{Z}/p^n\mathbb{Z}$ on $X_{\text{\'et}}$. We do have a constant sheaf \mathbb{Q}_p on $X_{\text{pro\'et}}$, but

$$H^i_{\mathrm{cute{e}t}}(X,\mathbb{Q}_p) o H^i_{\mathrm{pro\acute{e}t}}(X,\mathbb{Q}_p)$$

is not always an isomorphism.

CDN: Étale cohomology II

Consider the two short exact sequence

$$0 \longrightarrow \mu_{p^{n+1}} \longrightarrow \mathcal{O}^* \xrightarrow{(-)^{p^{n+1}}} \mathcal{O}^* \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

Taking limits along the vertical maps, we get another short exact sequence, we get

$$0 \to \mathbb{Z}_p(1) \to \lim_{\leftarrow (-)^p} \mathcal{O}^* \to \mathcal{O}^* \to 0. \tag{4}$$

Definition (Kummer map κ)

We define

$$\kappa: H^0_{et}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^*) \to H^1_{et}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathbb{Z}_p(1))$$

be the connecting homomorphism.

CDN: Étale cohomology III

Theorem (Colmez-Dospinescu-Niziol)

There is a $\Gamma_{\mathbb{Q}_p} \times \mathsf{GL}_n(\mathbb{Q}_p)$ -equivariant isomorphism

$$r_1: \operatorname{St}_1(\mathbb{Z}_p)^* \to H^1_{\operatorname{\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathbb{Z}_p(1)).$$

This is given by

$$r_1(\delta_{l_1}-\delta_{l_2})=\kappa(l_1/l_2).$$

CDN: Pro-étale cohomology I

For a rigid space X over C, by taking the inverse limit along $\times p$ map, the short exact sequence on $X_{\text{pro\acute{e}t}}$ of sheaves

$$0 \to \mu_{p^{\infty}} \to \mathcal{O}^{**} \xrightarrow{\log} \mathcal{O} \to 0$$

gives another short exact sequence

$$0 \to \mathbb{Q}_{p}(1) \to \lim_{\leftarrow \times p} \mathcal{O}^{**} \xrightarrow{\log'} \mathcal{O} \to 0.$$

There is a boundary map

$$\partial: \mathcal{O}[-1] \to \mathbb{Q}_p(1).$$

We have a spectral sequence

$$H^1_{\text{\'et}}(X,\Omega^j(-j)) \Rightarrow H^{1+j}_{\text{pro\'et}}(X,\mathcal{O})$$

where Ω^1 denotes the sheaf of differential 1-forms. In our case $X = \mathcal{H}_C^{n-1}$, the coherent sheaves of differential *j*-forms are acyclic, so we get

$$H^1_{\operatorname{pro\acute{e}t}}(X,\mathcal{O})\cong\Omega^1(X)(-1).$$

Gabrielle Li (UIUC Arithmetic and chromatic Pro-étale cohomology of Drinfeld's symmetric 12/04/2024 12 / 22

CDN: Pro-étale cohomology II

Definition (exp map)

We define

$$\operatorname{\mathsf{exp}}:\Omega^0(X)(0) o H^1_{\operatorname{\mathsf{pro\acute{e}t}}}(X,\mathbb{Q}_p(1)).$$

Theorem (Colmez-Dospinescu-Niziol)

There is a $\Gamma_{\mathbb{Q}_p} \times GL_n(\mathbb{Q}_p)$ -equivariant exact sequence of \mathbb{Q}_p -vector space

$$0 \to \frac{\Omega^0(\mathcal{H}_C^{n-1})}{\ker d} \xrightarrow{\exp} H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}_C^{n-1},\mathbb{Q}_p(1)) \to \mathsf{St}_1(\mathbb{Q}_p)^* \to 0$$

This theorem exhibits the pro-étale cohomology of \mathcal{H}_C^{n-1} as an extension of a space of differential forms by the dual of a Steinberg representation. Our goal is to compute $H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}_C^{n-1},\mathcal{O}^{**})$, so we need to compute $H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}_C^{n-1},\mu_{p^\infty})$ in order to use the logarithm exact sequence.

CDN: Pro-étale cohomology III

Corollary ([1] 5.2.5)

There is a $\Gamma_{\mathbb{Q}_p} \times \operatorname{GL}_n(\mathbb{Q}_p)$ -equivariant exact sequence

$$0 \to \frac{\Omega^0(\mathcal{H}_C^{n-1})}{\ker d} \xrightarrow{\exp'} H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}_C^{n-1}, \mu_{p^\infty}) \to \mathsf{St}_1(\mathbb{Q}_p \, / \, \mathbb{Z}_p)^* \to 0$$

Proof.

We have a map of exact sequences

$$0 \longrightarrow H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathbb{Z}_p(1)) \stackrel{\cong}{\longrightarrow} \operatorname{St}_1(\mathbb{Z}_p)^* \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \frac{\Omega^0(\mathcal{H}^{n-1}_C)}{\ker d} \longrightarrow H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathbb{Q}_p(1)) \longrightarrow \operatorname{St}_1(\mathbb{Q}_p)^* \longrightarrow 0$$

Snake lemma finishes the proof.

Calculation of \mathcal{H}^{n-1}_{C} I

We are ready to use the logarithm exact sequence and the previous corollary to deduce our main theorem.

Theorem (5.3.1)

We have a short exact sequence

$$0 \to \mathsf{St}_1(\mathbb{Q}_p \, / \, \mathbb{Z}_p)^*(0) \to H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathit{C}}, \mathcal{O}^{**}) \to \Omega^{1,\mathit{cl}}(\mathcal{H}^{n-1}_{\mathit{C}})(-1) \to 0$$

where $\Omega^{1,cl}$ denotes the sheaf of closed differential 1-forms on \mathcal{H}^{n-1}_C .

Proof.

Let $\partial^1: H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C,\mathcal{O}) \to H^2_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C,\mu_{p^\infty})$ be the boundary map of the logarithm exact sequence. From the long exact sequence associated to the logarithm sequence on cohomology, there is a short exact sequence

$$0 \to \mathsf{coker}(\partial^0) \to H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^{**}) \to \mathsf{ker}(\partial^1) \to 0.$$

Calculation of \mathcal{H}^{n-1}_{C} II

Proof.

Note that since as p acts on \mathcal{O} invertibly, the composition $\mathcal{O} \to \mu_{p^{\infty}}[1] \to \mathbb{Z}_p(1)[2]$ is trivial, and we have a dashed lift

Therefore, on cohomology level we have

$$H^0_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}},\mathcal{O}) o H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}},\mu_{p^\infty}),$$

which coincides with

$$\text{exp}: \Omega^0(\mathcal{H}^{n-1}_{\mathcal{C}})(0) \cong H^0_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}},\mathcal{O}) \to H^1_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}},\mathbb{Q}_{\rho}(1)).$$

Calculation of \mathcal{H}_{C}^{n-1} III

Proof.

We now obtain a diagram of exact sequences

$$0 \longrightarrow \Omega^{1}(\mathcal{H}_{C}^{n-1})(-1) \xrightarrow{\cong} H_{\mathsf{pro\acute{e}t}}^{1}(\mathcal{H}_{C}^{n-1}, \mathcal{O}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \partial^{1}$$

$$0 \longrightarrow \frac{\Omega^{1}(\mathcal{H}_{C}^{n-1})}{\ker d}(-1) \xrightarrow{\mathsf{exp'}} H_{\mathsf{pro\acute{e}t}}^{2}(\mathcal{H}_{C}^{n-1}, \mu_{p^{\infty}}) \longrightarrow \mathsf{St}_{2}(\mathbb{Q}_{p} / \mathbb{Z}_{p})^{*}(-1)$$

$$\downarrow \qquad \qquad \downarrow 0$$

Snake lemma gives

$$\ker(\partial^1) = \Omega^{1,cl}(\mathcal{H}_C^{n-1})(-1), \ \operatorname{coker}(\partial^0) = \operatorname{St}_1(\mathbb{Q}_p \, / \, \mathbb{Z}_p)^*(0).$$

Invariant module I

Corollary (5.3.2)

The short exact sequence of pro-étale shaves on \mathcal{H}_{C}^{n-1} :

$$0 \to \mathbb{Z}_p(1) \to \lim_{\leftarrow (-) \times p} \mathcal{O}^{**} \to \mathcal{O}^{**} \to 0$$

induces short exact sequence of Π_n -modules for $m \geq 0$:

$$0 \to H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathbb{Z}_p(1)) \to H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \lim_{\leftarrow (-) \times p} \mathcal{O}^{**}) \to H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^{**})$$

In other words, the boundary maps associated with the short exact sequence are 0.

□ ▶ ∢□ ▶ ∢ □ ▶ ∢ □ ▶ √□ ♥

Invariant module II

Proof.

We need to show that

$$H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{C}, \varprojlim_{\leftarrow(-)\times p} \mathcal{O}^{**}) \to H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{C}, \mathcal{O}^{**})$$

is a surjective map. First, note that the map factor as

$$H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{C}, \varprojlim_{\leftarrow (-) \times p} \mathcal{O}^{**}) \to \varprojlim_{\leftarrow (-) \times p} H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{C}, \mathcal{O}^{**}) \to H^m_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{C}, \mathcal{O}^{**})$$

Also we note that the first map is surjective by the Milnor sequence. Theorem 9 exhibits $H^m_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_C,\mathcal{O}^{**})$ as a p-divisible group, so the map from the inverse limit to $H^m_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_C,\mathcal{O}^{**})$ is surjective.

Invariant module III

Corollary (5.3.3)

There is a canonical isomorphism

$$H^0(\Pi_n, \operatorname{St}_1(\mathbb{Q}_p \operatorname{/} \mathbb{Z}_p)^*) \cong H^0(\Pi_n, H^1_{\operatorname{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathcal{O}^{**})).$$

Therefore, for $n \geq 2$, we identify $H^0(\Pi_n, H^1_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathcal{O}^{**}))$ as a free \mathbb{Z}_p -module of rank 1. For n=1, we have $H^0(\Pi_n, H^0_{\text{pro\acute{e}t}}(\mathcal{H}^{n-1}_C, \mathcal{O}^{**}))=0$.

Fix points IV

Proof.

Recall from Theorem 11, we have a short exact sequence

$$0 \to \mathsf{St}_1(\mathbb{Q}_p \, / \, \mathbb{Z}_p)^*(0) \to H^1_{\mathsf{pro\acute{e}t}}(\mathcal{H}^{n-1}_{\mathcal{C}}, \mathcal{O}^{**}) \to \Omega^{1,\mathit{cl}}(\mathcal{H}^{n-1}_{\mathcal{C}})(-1) \to 0$$

which Π_n acts on. The action of Π_n on $\operatorname{St}_1(\mathbb{Q}_p/\mathbb{Z}_p)$ is through $\operatorname{GL}_n(\mathbb{Z}_p)$. First observe the base change

$$\Omega^{1,cl}(\mathcal{H}^{n-1}_C)(-1) = \Omega^{1,cl}(\mathcal{H}^{n-1}) \otimes_{\mathbb{Q}_p} C(-1)$$

where Π_n acts on C(-1), so we get

$$H^0(\Gamma_{\mathbb{Q}_p},\Omega^{1,cl}(\mathcal{H}_C^{n-1})(-1))=\Omega^{1,cl}(\mathcal{H}^{n-1})\otimes H^0(\Gamma_{\mathbb{Q}_p},C(-1))=0.$$

The second isomorphism follows from Theorem 4.4.3 of [2]. Therefore, we obtain the desired isomorphism from the short exact sequence in Theorem 11.

References

